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A B S T R A C T

Functional connectivity – the co-activation of brain regions – forms the basis of the brain’s functional architecture.
Often measured during resting-state (i.e., in a task-free setting), patterns of functional connectivity within and
between brain networks change with age. These patterns are of interest to aging researchers because age dif-
ferences in resting-state connectivity relate to older adults’ relative cognitive declines. Less is known about age
differences in large-scale brain networks during directed tasks. Recent work in younger adults has shown that
patterns of functional connectivity are highly correlated between rest and task states. Whether this finding ex-
tends to older adults remains largely unexplored. To this end, we assessed younger and older adults’ functional
connectivity across the whole brain using fMRI while participants underwent resting-state or completed directed
tasks (e.g., a reasoning judgement task). Resting-state and task functional connectivity were less strongly corre-
lated in older as compared to younger adults. This age-dependent difference could be attributed to significantly
lower consistency in network organization between rest and task states among older adults. Older adults had less
distinct or segregated networks during resting-state. This more diffuse pattern of organization was exacerbated
during directed tasks. Finally, the default mode network, often implicated in neurocognitive aging, contributed
strongly to this pattern. These findings establish that age differences in functional connectivity are state-
dependent, providing greater insight into the mechanisms by which aging may lead to cognitive declines.
1. Introduction

Functional connectivity – the co-activation of brain regions within
brain networks – is a hallmark feature of the functional architecture of
the brain (Buckner et al., 2013). A growing body of research has begun to
characterize changes in functional connectivity associated with healthy
aging (for a review, see Ferreira and Busatto, 2013; Sala-Llonch et al.,
2015). These changes are of interest to aging researchers because func-
tional connectivity relates to how the brain gives rise to myriad cognitive
functions (Stevens and Spreng, 2014), and may inform how aging
negatively impacts older adults’ cognition (e.g., Hughes et al., 2019b).
Functional connectivity is examined either during resting-state (e.g.,
task-free setting; Greicius et al., 2003; Raichle, 2011), or when in-
dividuals are engaged in directed tasks. Research in younger adults
suggests that the underlying functional architecture of brain networks
remains relatively consistent between these two types of states (Cole
et al., 2014). This relative overlap between states suggests a shared
functional architecture underlying and even shaping brain function
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(Chan et al., 2017; Cole et al., 2016). However, it remains largely un-
explored whether the same is true for older adults (but see Geerligs et al.,
2015b; Monteiro et al., 2019). This is an important topic because aging
may disproportionately affect functional connectivity in one state (e.g.,
during task), thus disrupting how brain networks interact in a way that is
detrimental for cognition. The current study addresses this gap in the
literature.

Younger adults’ resting-state connectivity patterns are highly corre-
lated with task-evoked connectivity patterns (e.g., Cole et al., 2014;
Smith et al., 2009). This finding has been interpreted as evidence for a
shared functional architecture present during resting-state and many
directed tasks, and minimally modulated in response to task demands
(Cole et al., 2014). A potential implication of this overlap is that
resting-state connectivity constraints the activation of brain regions in
response to task demands (Chan et al., 2017; Cole et al., 2016). Brain
organization facilitating precise modulation makes sense from an effi-
ciency perspective. The organization of brain regions into distinct and
strongly internally-connected networks increases the amount of
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information that can be communicated within a short window of time
(Bullmore and Sporns, 2012). Thus, highly correlated functional con-
nectivity reflects functional architecture underlying rest and task states
that may be well-adapted for integrating information in the course of
cognition.

Although younger adults’ functional connectivity between resting
and task states is highly correlated, the relationship between these states
may be degraded in older adults. Research using resting-state data have
shown age-related declines in functional connectivity within well-
characterized brain networks (for a review, see Ferreira and Busatto,
2013; Sala-Llonch et al., 2015). A hallmark of older adults’ brain orga-
nization is that there is weaker within-network connectivity coupled with
stronger between-network connectivity (Spreng and Turner, 2019).
These connectivity patterns reflect a weaker network organization (i.e.,
assignment of brain regions into distinct networks). As a result, networks
are less distinct and less well-organized in older adults versus younger
adults (Chan et al., 2014; Geerligs et al., 2015a). This “de-differentiation”
(Goh, 2011) across neural systems during resting-state has negative im-
plications for older adults. De-differentiation, for example, has been
linked to older adults’ worse performance than younger adults in several
cognitive domains (e.g., memory, Andrews-Hanna et al., 2007; theory of
mind, Hughes et al., 2019b). Altered functional connectivity among
large-scale brain networks in aging (Spreng and Turner, 2019) may thus
be implicated in a variety of cognitive deficits in older adults because the
baseline (resting-state) functional architecture of the brain is less effi-
ciently organized to respond differentially to task demands (e.g.,
Zebrowitz et al., 2016).

Despite well-documented findings at rest, less is known about how, or
if, functional connectivity patterns are different between resting-state
and directed tasks in older adults (but see Geerligs et al., 2015b; Mon-
teiro et al., 2019). One possibility is that age differences in functional
connectivity during resting-state may constrain connectivity during
directed tasks. In this case, connectivity between task and rest would still
be highly correlated for older adults, but the network organization would
be different between older adults and younger adults due to
de-differentiation during resting-state. Alternatively, aging may further
exacerbate functional connectivity changes during task. This would
result in a lower correlation of functional connectivity between rest and
task for older adults (versus younger adults), as well as different network
organization for older adults than younger adults. The latter possibility
may indicate that older adults’ age deficits in cognition relative to
younger adults are more strongly related to age differences in
task-evoked, rather than resting-state, connectivity. This possibility
would raise the important conceptual issue of whether rest is truly the
ideal condition under which to examine how age differences in brain
connectivity relate to behavioral differences.

Participant age might indeed exacerbate individual differences in
functional connectivity between rest and task states (Finn et al., 2017;
Geerligs et al., 2015b). For example, a recent study examined the overlap
between functional connectivity patterns during resting-state and a
directed sensorimotor task (responding to bilateral visual and auditory
input) in a lifespan sample (ages 18–88; Geerligs et al., 2015b). Func-
tional connectivity was less correlated between resting-state and the
sensorimotor task with increasing age. This pattern of results occurred
because older participants (vs. younger) had less distinct networks dur-
ing resting-state – i.e., weaker within-network and stronger
between-network connectivity. Critically, this pattern was even more
pronounced during task. Similar age differences were obtained using
motor tasks (Monteiro et al., 2019) and passive movie-watching (Geerligs
et al., 2015b). Moreover, a greater magnitude of difference between rest
and task states related to age deficits in task performance (Monteiro et al.,
2019). Certain network-level effects were task-specific (Archer et al.,
2016; Geerligs et al., 2015b). However, it is unclear what task features
may be driving particular network-level effects because few types of task
states have been examined. To understand how, if at all, the relationship
between resting-state and task-evoked connectivity might contribute to
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age deficits in cognitive function, it is thus important to examine func-
tional connectivity during tasks that are cognitively demanding.

The current study addresses this gap in the literature by investigating
whether age differences are exacerbated when comparing resting-state to
a higher-order cognition task – a reasoning judgment (Moran, 2013). We
used a reasoning task as the comparison task to rest because the same
reasoning task has illustrated age differences in both network and brain
function (Hughes et al., 2019b; Moran et al., 2012). Moreover, judgments
in the reasoning task mirrored the types of judgments that older adults
make in everyday life (e.g., Moran et al., 2012). Higher-order cognition,
such as reasoning judgments (McKinnon and Moscovitch, 2007), also
elicits more variable neural activity from associative brain regions that
facilitate communication across networks (e.g., in contrast to sensori-
motor regions; Mueller et al., 2013). The associative nature of these
networks is important because their connectivity has been widely related
to many of the cognitive functions that decline in older versus younger
adults (Andrews-Hanna et al., 2007; Damoiseaux et al., 2008; Hampson
et al., 2006; Hughes et al., 2019b; Reineberg et al., 2015). We hypoth-
esized that connectivity between rest and task states will be less corre-
lated in older versus younger adults (Hypothesis 1). Furthermore, we
predicted this pattern would emerge because functional network orga-
nization (i.e., assignment of brain regions into distinct networks) would
be less consistent between rest and task states for older versus younger
adults (Hypothesis 2).

A final question was whether particular networks would be more
susceptible to age differences in functional connectivity between rest and
task states. We anticipated that the default mode network (DMN) would
demonstrate a disproportionate magnitude of difference in connectivity
strength between states in older adults. DMN connectivity is particularly
vulnerable to aging; older adults, versus younger adults, exhibit partic-
ularly weaker resting-state connectivity within the DMN when older
adults are healthy and when older adults exhibit signs of pathological
aging (Andrews-Hanna et al., 2007; Betzel et al., 2014; Campbell et al.,
2013; Damoiseaux et al., 2008; Geerligs et al., 2015a; Hafkemeijer, van
der Grond and Rombouts, 2012). Furthermore, the DMN is often
considered a “task-negative” network because it exhibits stronger func-
tional connectivity during rest and appears suppressed during
demanding task states (Raichle et al., 2001). These findings support the
possibility that DMN connectivity should be stronger during rest and
weaker during task states. Age differences also occur in the extent that
the DMN is suppressed during task states (Reuter-Lorenz and Cappell,
2008). We predicted that the magnitude of difference in functional
connectivity between rest and task states would be greater for particular
networks (e.g., the DMN) among older versus younger adults (Hypothesis
3).

2. Material and methods

2.1. Participants

Forty young adults (18–33 years old, Mage ¼ 21.58, SD ¼ 2.82; 25
female; years of education: M ¼ 15.24, SD ¼ 1.88) and 35 older adults
(61–86 years old,Mage¼ 71.66, SD¼ 6.09; 22 female; years of education:
M ¼ 16.96, SD ¼ 2.19) who were right-handed, White, not Hispanic, and
had no recent history of neurological problems gave informed consent to
participate. We recruited younger adults from Indiana University in
Bloomington and older adults from the Bloomington, Indiana community
via newspaper and electronic advertisements. The study was approved by
the Indiana University Institutional Review Board. Older adults and
younger adults were normal functioning, as evidenced by a score of 26 or
higher on the Mini-Mental State Exam (MMSE; Folstein et al., 1975).

2.2. Procedure

Participants completed the study across two testing sessions that were
approximately one week apart. The first session included behavioral
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testing that lasted approximately 2 h. During this session, participants
completed initial screening for eligibility to undergo fMRI, measures of
cognitive function (e.g., the MMSE), and other measures unrelated to the
current research.

The second testing session, occurring approximately one week later,
included MRI. Participants completed an anatomical scan and one
resting-state scan. The resting-state scan was collected over one run that
lasted 15 min; a common scan duration for assessing functional con-
nectivity estimates within and across participants (Shah et al., 2016).
Participants were instructed to remain still, stay awake, and keep their
eyes open. No stimuli were presented during this scan and the projector
was off. After the resting-state scan, participants completed three sepa-
rate tasks during fMRI. The three tasks were (1) a reasoning task in which
participants made judgments based on written stories about objects and
people, (2) an evaluative judgment task in which participants rated faces
based on their likability, and (3) a face perception task. The order of the
three tasks was counterbalanced across participants. A prior publication
(Hughes et al., 2019b) reported analyses based on the resting-state and
reasoning task data from this sample of participants that were unrelated
to the current hypotheses.

Given that a greater quantity of data results in more reliable func-
tional connectivity estimates (Laumann et al., 2015; Shah et al., 2016)
and discrimination between task and rest (Anderson et al., 2011), our
primary focus was on the reasoning task, which had the greatest total
quantity of data of the task scans (totaling 10 min and 40 s). To assess the
generalizability of our results, we then replicated the analyses using the
data from the face evaluation task (totaling 6 min and 48 s; see Supple-
mentary Materials).

The reasoning task included false belief (theory of mind) and false
photo (control) conditions (Hughes et al., 2019b). Participants responded
to statements about stories referring to either a person’s beliefs (false
belief condition) or to physical representations (false photo condition).
Both conditions required that participants make an inference. For
example, during one false belief trial, participants viewed the story,
“When Lisa left Jacob, he was deep asleep on the beach. A few minutes
later, a wave woke him. Seeing Lisa was gone, Jacob decided to go
swimming.” This story was then followed by a true or false inference
(e.g., “Lisa now believes that Jacob is sleeping”). Participants were
instructed to indicate whether the inference was true or false. The false
photo condition was similar to the false belief condition, but differed only
in that participants were not asked to make an inference about another
person’s mental states. For example, participants viewed the story “When
the picture was taken of the house, it was one story tall. Since then, the
renovators added an additional story and a garage” followed by the true
or false inference “In the picture, the house is two stories tall and has a
garage.”

In the current work, we collapsed our analyses of task-evoked func-
tional connectivity across task conditions (false belief, false photo) for
two reasons. First, the focus of the current work was to compare rest to
task states (see also the face evaluation task results in the Supplementary
Materials) at the level of large-scale brain systems. Condition-specific
effects in functional connectivity might be expected to emerge at a
more localized scale (e.g., among specific connections; Cole et al., 2014;
Hughes et al., 2019b). Therefore, our primary interest was to focus on a
task state in which participants read similar amounts of information and
were asked to make similar types of reasoning judgments (true or false)
about the statements presented (Moran, 2013; Saxe and Kanwisher,
2003). We thus refer to this combined task state as a reasoning task.
Second, there is limited work on the validity of functional connectivity
estimates from event-related (vs. blocked) designs (but see Barch et al.,
2013) which, given the relatively low number of trials per condition, may
negatively impact the reliability of any condition-specific analyses.
Collapsing across task conditions therefore had the second purpose of
reducing noise in the analyses (i.e., by doubling the number of trials and
length of the task).

In total, participants responded to 24 stories (12 per condition) across
3

two runs lasting, in total, 10 min and 40 s. The false belief and false photo
trials were presented in an event-related fashion that was pseudor-
andomized across participants. Each trial began with a story presented
for 10 s. The story was followed by a fixation cross at the centre of the
display, which was presented at a variable delay of 0–6 s. Finally, a
statement that was true or false was presented for 6 s. In each run, there
were three 0 s delays, three 2 s delays, three 4 s delays, and three 6 s
delays (Mdelay ¼ 3 s, SD ¼ 2.34), with 8 s of fixation at the beginning of
the run and 10 s of fixation at the end, for a total of 128 s of fixation and
192 s of stimulus presentation.

2.3. fMRI data acquisition and analysis

Whole-brain imaging was performed on a Siemens 3.0T Prisma MRI
Scanner using a 20-channel phase arrayed head coil at the Indiana Uni-
versity Imaging Research Facility in Bloomington, Indiana. Stimuli were
presented using a back projector (Sony WUXGA VPL-FH30) and behav-
ioral data were collected on a Dell laptop running Windows 7. The
scanner was synced to the data collection equipment via scanner TTL.
Anatomical images were acquired with a high-resolution 3-D magneti-
zation prepared rapid gradient echo sequence (sagittal rotation; 160
slices, TE ¼ 2.7 ms, TR ¼ 1800 ms, TI ¼ 900 ms, flip angle ¼ 9�, 1.0 mm
isotropic voxels; with no fat suppression).

Functional images for resting-state were collected over one run con-
sisting of 450 time points. Subsequently, participants completed two runs
of 160 time points each (320 total) of the reasoning task in counter-
balanced order. All functional scans were collected using an echo-planar
image (EPI) sequence sensitive to blood oxygen level dependent contrast
(T2*; 54 slices with 2.2 mm thickness and no gap, TE ¼ 30 ms, TR ¼
2000 ms, flip angle ¼ 52�, FOV ¼ 242 mm, in-plane matrix size ¼ 110 �
110, A/P phase encoding direction). Slices were collected in an inter-
leaved order (multi-band acceleration factor ¼ 2). These slices provided
partial-brain coverage (i.e., the entire cortex with partial cerebellum, but
not brainstem).

2.3.1. Preprocessing
Resting-state and task data were preprocessed identically, except

where noted, for straightforward comparison. Preprocessing was con-
ducted in SPM12 (Wellcome Trust Centre for Neuroimaging, London, UK;
www.fil.ion.ucl.ac.uk/spm). Images were slice-time corrected, realigned
to correct for motion, normalized to the Montreal Neurological Institute
(MNI) template, and smoothed using an 8 mm FWHM isotropic Gaussian
kernel (for similar preprocessing parameters in aging research, see Cas-
sidy et al., 2016; Castle et al., 2012; Krendl et al., 2016; Zebrowitz, Ward,
Boshyounger adultsn, Gutchess and Hadjikhani, 2018; Zebrowitz, Ward,
Boshyounger adultsn, Gutchess and Hadjikhani, 2016). Data were
resampled to 3 mm-isotropic voxels.

2.3.2. Network construction
The preprocessed resting-state and task data were submitted to the

CONN functional connectivity toolbox (Whitfield-Gabrieli and
Nieto-Castanon, 2012). This toolbox was used to test for motion artifacts
and to estimate functional connectivity for each participant during each
state (i.e., across the full time-series for rest and for task). Motion artifacts
were detected on a participant-by-participant basis using custom soft-
ware that detected outlier time points (http://www.nitrc.org/projects/a
rtifact_detect). Volumes were recorded as an outlier if the signal for that
time point fell three standard deviations outside the mean global signal
for the entire run or if the scan-to-scan head motion exceeded .5 mm in
any direction. Based on these analyses, two older adults were excluded
from further analyses because they did not meet our a priori cut-off of
having at least 150 non-outlier volumes of data (approximately 5 min)
for either resting-state or task data, which prior work suggests is the
minimum amount of data needed to compute stable correlations from
resting-state functional scans (Power et al., 2014; Van Dijk et al., 2010).
This criterion is also appropriate for task-evoked connectivity based on

http://www.fil.ion.ucl.ac.uk/spm
http://www.nitrc.org/projects/artifact_detect
http://www.nitrc.org/projects/artifact_detect


1 Note that the magnitude of the age difference in the rest-task correlation did
not differ between conditions (false belief, false photo) in the reasoning task,
t(71) ¼ 0.57, p > .28 (see Supplementary Materials Fig. 10); therefore we
collapsed across conditions.
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the quantity of data observed in similar research (Archer et al., 2016;
Barch et al., 2013; Cole et al., 2014; Geerligs et al., 2015b; Monteiro
et al., 2019; Murphy et al., 2019). Like past research, older adults (Mrest¼
51.76, SDrest ¼ 49.69; Mtask ¼ 49.73, SDtask ¼ 34.63) had more outlier
volumes than younger adults (Mrest ¼ 31.95, SDrest ¼ 20.56; Mtask ¼
31.50, SDtask ¼ 23.63) during resting-state, t (73) ¼ 2.31, p ¼ .02, d ¼
0.54, 95% CI [0.07, 1.01]; and task, t (73)¼ 2.66, p¼ .01, d¼ 0.63, 95%
CI [0.15, 1.10]. Excluding these outlier volumes, older adults retained an
average of 13.27 min (SD ¼ 1.66; 88%) at rest and 9.01 min (SD ¼ 1.15;
84%) at task; whereas younger adults retained an average of 13.94 min
(SD ¼ 0.69; 93%) at rest and 9.62 min (SD ¼ 0.79; 90%) at task.

Outlier time points were excluded from analysis using participant-
specific regressors. Other nuisance regressors included motion re-
gressors from realignment and noise estimates from white matter and
cerebrospinal fluid (CSF) from a PCA-based approach to noise reduction
as described by Whitfield-Gabrieli and Nieto-Castanon (2012). Because
noise patterns vary across brain areas, global signal regression, the
average signal across all voxels in the brain, has less sensitivity to
non-artifactual functional connectivity (Chai et al., 2012). The
PCA-based approach to noise reduction implemented in CONN, which
regresses out physiological noise from areas of non-interest (e.g., white
matter and CSF), is advantageous because it controls for inflation of
negative functional connectivity estimates while preserving valid posi-
tive estimates (for more information, see Chai et al., 2012; Whitfield-G-
abrieli and Nieto-Castanon, 2012).

Another possible confound is that higher frequencies may contain
task signals that confound measurement of the lower frequency fluctu-
ations that typically comprise functional connectivity estimates (Biswal
et al., 1995; Fox et al., 2005). We addressed this possible confound in two
ways. First, we applied a high-pass filter (0.008 Hz) to both rest and task
data, as has been done in other work directly comparing functional
connectivity from rest and task states (Cole et al., 2014) to filter task
signals at high frequencies. Also, for task data only, we conducted a
general linear model regression of task events and used the residuals to
compute functional connectivity (Cole et al., 2014; Fair et al., 2007). This
step limits the spurious inflation of functional connectivity estimates by
task activations (for more information, see Cole et al., 2019), allowing us
to conclude that state differences in functional connectivity were not due
to task-related global changes in neural activity.

Whole-brain functional connectivity estimates were calculated across
the time series using Fisher’s z coefficients between the 114 cortical re-
gions of interest (ROIs) from the Yeo 17 network split-label parcellation
(Yeo et al., 2011) and an additional 14 subcortical ROIs isolated using the
maximum likelihood subcortical FSL Harvard-Oxford Atlas (Desikan
et al., 2006). This parcellation has been used in prior aging research (Cao
et al., 2014; Hughes et al., 2019b). Cerebellum ROIs were not included as
it only had partial coverage in most participants. This procedure gener-
ated a matrix of Fisher’s z coefficients between all pairs of brain regions
in the parcellation (128� 128 regions) for each participant at rest and at
task. Self-connections were excluded from analysis.

2.4. Data and code availability

Because participants did not consent to having their data stored in a
specific public repository, the de-identified data (e.g., functional con-
nectivity matrices) and code that support the findings of this study are
available from the corresponding author, C.H., upon request. No formal
data-sharing agreement is necessary.

3. Results

3.1. Hypothesis 1: The correlation of functional connectivity between rest
and task states is lower for older adults versus younger adults

Our first goal was to determine the correlation of the functional
connectivity between rest and task states – similar to Cole et al. (2014) –
4

for younger adults and older adults. We expected this correlation to be
lower in older versus younger adults. We calculated the rest-task corre-
lation by conducting a Pearson’s correlation between the rest and task
whole-brain matrices for each participant. To test for age differences, we
conducted a t-test on the r-values between older adults and younger
adults. We compared the observed t-value to a permuted null distribution
to determine significance. Specifically, we permuted group assignment,
preserving the sample sizes of the original older adults and younger
adults groups (N1 ¼ 33, N2 ¼ 40), and recalculated the t-values from
these comparisons across 10,000 iterations. We then recorded the num-
ber of null observations equal to or greater than the observed statistic
divided by the number of iterations, thus obtaining a p-value. All further
significance testing for age differences used this permutation testing
approach, except where noted. The permutation testing approach is
suitable because it tests for group differences within our data specifically
attributed to age (for similar approaches, see Contreras et al., 2019;
Hughes et al., 2019b).

Replicating past work (Cole et al., 2014), we found relatively high
correspondence between rest and task states across all participants,Mcorr
¼ 0.68, SD ¼ 0.09 (see Fig. 1 for a visualization of the averaged con-
nectivity for each age group and state). Supporting Hypothesis 1, older
adults (Mcorr ¼ 0.61, SD ¼ 0.08) had lower rest-task correlation than
younger adults (Mcorr ¼ 0.73, SD ¼ 0.04), t (71) ¼ 8.45, p < .001 (see
Fig. 2).1
3.2. Hypothesis 2: Network organization is less consistent between resting-
state and task for older adults versus younger adults

A lower correlation between rest and task states in older adults may
arise because the organization of their networks changes between states
to a greater extent than in younger adults. We next tested for this pos-
sibility. Specifically, we characterized the network organization –

assignment of brain regions into distinct networks – for each participant
group (older adults, younger adults) and state (rest, task). Then, we
compared key features of those organizations (Sporns and Betzel, 2016).
This method allowed us to test whether older adults’ lower rest-task
correlation in functional connectivity emerged because older adults’
network organization is less consistent across states relative to younger
adults’ network organization.

3.2.1. Deriving network organization
For each participant, we applied the Louvain modularity algorithm

(Blondel et al., 2008; Rubinov and Sporns, 2011) to each state to identify
a network organization of their respective data. We employed the
“community_louvain” function from the Brain Connectivity Toolbox (htt
ps://sites.google.com/site/bctnet/; Rubinov and Sporns, 2011) to do
this. The algorithm was run over a range of the resolution parameter
gamma (γ) from 0.5 to 2.5 in increments of 0.05 (250 repeats for each
setting of gamma). We varied gamma, a free parameter, to ensure
robustness. This approach has the benefit of capturing the reliability of
differences in network organization onmultiple spatial scales (for details,
see Geerligs et al., 2015b; Ji et al., 2019; Sporns and Betzel, 2016). The
network organization with the highest modularity value (Q) – reflecting
strong within-network connectivity and weak between-network con-
nectivity – at each level of gamma (evaluated 250 times) was retained for
analysis. Age differences in network organizations were predicted to
emerge at intermediate values of gamma, given that very low values and
very high values of gamma are less biologically meaningful (i.e., likely to
result in subnetworks corresponding to entire brain hemispheres or to
singleton brain regions, respectively).

https://sites.google.com/site/bctnet/
https://sites.google.com/site/bctnet/


Fig. 1. Functional connectivity for each age group (older adults, younger adults) from each state (rest, reasoning task) sorted by common functional brain networks.
Fisher’s z coefficients were transformed to Pearson’s r coefficients for visualization for their ease of interpretation. The top row shows the functional connectivity
between each pair of brain regions. The bottom row down-samples the top row by showing the averaged functional connectivity within and between networks. VIS ¼
visual network; SOM ¼ Somatomotor network; DAN ¼ dorsal attention network; VAN ¼ ventral attention network; LIM ¼ limbic network; CON ¼ frontoparietal
control network; DMN ¼ default mode network; SUB ¼ subcortical network.

C. Hughes et al. NeuroImage 209 (2020) 116521
3.2.2. Comparing network organizations
We first examined age differences in the total number of subnetworks

detected between states. This metric reflects the average number and size
of subnetworks that parse the overall organization into coherent sub-
systems. We recorded the total number of subnetworks for each
Fig. 2. Violin plot of the Pearson’s correlations between task and rest functional
connectivity for each age group. White dots reflect the median, thick black lines
indicate the first and third quartile range, and the thin black lines indicate the
maximum and minimum of the data. The shape of each is determined by the
density of values.
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participant and state across the range of gamma values. The number of
subnetworks describing the organization of both states was higher for
older adults than younger adults (see Fig. 3A; see Supplementary
Fig. 3. Fig. 3A shows the number of subnetworks detected by modularity
maximization across a range of the resolution parameter gamma for each group
at each state. Fig. 3B shows the variation of information between rest and task
network organizations for each group across the same range of gamma. In both
plots, shaded areas represent � 1 standard error from the mean (solid line).



Fig. 4. Results from the network contingency analysis using an example t-value
threshold of 3.50. Each dot represents a functional connection whose age dif-
ference exceeds the threshold, and the color indicates whether the functional
connectivity of that connection was stronger in older adults (positive, red) or
younger adults (negative, blue). The shading represents blocks where the
number of connections that showed an age difference was statistically signifi-
cant. VIS ¼ visual network; SOM ¼ Somatomotor network; DAN ¼ dorsal
attention network; VAN ¼ ventral attention network; LIM ¼ limbic network; FP
¼ frontoparietal control network; DMN ¼ default mode network; SUB ¼
subcortical network.
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Materials Fig. 1 for individual-level results). However, it may be possible
that older adults’ network organization resolves into more subnetworks
regardless of the particular state, reflecting less distinct networks in
general. In other words, these results might have been conflated by in-
dividual variation in network organization overall. To address this po-
tential confound, we recorded the number of networks detected for task
minus rest for each participant (within-subjects) and then permuted the
age comparison. By doing so, we were able to conclude that age group
differences were state-specific. Consistent with our hypothesis that older
adults’ (vs. younger adults’) network organization is more diffuse (i.e.,
less distinct) during task versus rest, older adults had a higher number of
subnetworks detected during the reasoning task than at rest compared to
younger adults at most values of gamma (0.70, t ¼ 1.89; 0.90–0.95, t-
values range: [3.13, 3.95]; 1.05–2.15, t-values range: [1.75, 2.69], 2.25, t
¼ 1.77).

Variation of information is a normalized information-theoretic mea-
sure of distance (i.e., consistency) between network organizations
(Meil�a, 2007). Comparing variation of information in older adults versus
younger adults provides converging evidence to the prior analysis by
establishing age differences in the consistency with which brain regions
are assigned to the same networks between rest and task states. We
calculated variation of information using the “partition_distance” func-
tion from the Brain Connectivity Toolbox. Because older adults and
younger adults might have different network organizations in general,
we calculated the variation of information between each participant’s
rest and task partitions (within-subjects) and permuted the age differ-
ence. Overall, the results most often showed that older adults’ functional
brain networks exhibit more change between rest and task states. Spe-
cifically, older adults had a higher variation of information between rest
and task network organizations than younger adults (see Fig. 3B; see
Supplementary Materials Fig. 1 for individual-level results) at interme-
diate values of gamma from 0.90 to 2.40 (t-values range: [1.87, 9.18]), as
predicted. Ancillary, younger adults had a greater variation of informa-
tion than older adults at the lowest levels of gamma from 0.5 to 0.60
(t-values range: [2, 2.55]), and no significant age differences emerged for
gamma values between 0.65 and 0.85 or gamma values at the highest two
values of gamma – 2.45 to 2.50. That age differences in network orga-
nization emerged across a wide range of intermediate gamma values
indicates that the findings are reliable across multiple spatial scales.

3.3. Hypothesis 3: Particular networks, such as the DMN, have a greater
magnitude of difference between rest and task states in older adults versus
younger adults

Finally, we assessed whether age differences in the magnitude of
change between states emerged within or between particular networks
(e.g., the DMN). To examine age differences in the magnitude of change
between rest and task, we created a difference matrix for each participant
of the connectivity for the reasoning task minus the connectivity for rest
between each pair of brain regions (i.e., each connection). Then, we took
the absolute value of the difference matrix such that all values were zero
or positive. This resulted in a 128 � 128 region-by-region matrix of the
magnitude of state difference for each participant. Using the absolute dif-
ference matrices, we conducted a network contingency analysis
described in Contreras et al. (2019) and similar to the procedure
described in Sripada et al. (2014a; 2014b) to detect within or between
which networks the age differences in the magnitude of rest-task differ-
ence were most prominent. This non-parametric method is suitable
because it yokes rest and task at each connection, which accounts for the
possibility that older adults have overall weaker connectivity across
states. Moreover, by comparing connection counts within and between
network blocks, we can reduce the number of significance tests
performed.

The network contingency analysis was conducted in three stages.
First, we conducted a t-test between older adults and younger adults at
each connection. Next, brain regions in the parcellation were assigned to
6

one of eight functional brain networks, including the seven cortical
networks from Yeo et al., 2011; Visual, Somatomotor, Dorsal Attention,
Ventral Attention, Limbic, Frontoparietal, and Default) and the collection
of subcortical regions. This divided the connectivity matrices into an 8 �
8 matrix with 36 unique sub-blocks (8 within network and 28 between
networks). The t-value from all connections were thresholded across a
range from � 2 to � 6 in increments of 0.10 to ensure robustness. Values
greater than the threshold indicate connections whose magnitude of
difference between states was greater for older adults and values less
than the threshold indicate connections whose magnitude of difference
between states was greater for younger adults. We counted the number of
connections surviving the t-threshold – either t > tthr or t < -tthr for each
block. We calculated the p-value for each block as the number of sig-
nificant connections in our data greater than in a permuted null distri-
bution. We accounted for multiple comparisons by applying a Bonferroni
correction to the alpha (p ¼ .05) for analysis across 8 functional brain
networks, resulting in a Bonferroni-corrected p-value of .0014 (0.05/36).

The network contingency analysis confirmed our hypothesis that
older adults, compared to younger adults, had a greater magnitude of
difference between states in the functional connectivity of particular brain
networks. This finding held across multiple t-value thresholds; to ease
discussion, we focus on the blocks identified using the t-value threshold
of 3.50. We found that older adults and younger adults differed in the
magnitude of functional connectivity at a significant number of con-
nections within the DMN (as predicted), ventral attention network
(VAN), somatomotor network (SOM), and between the DMN and VAN
(see Fig. 4). The DMN, VAN, SOM, and DMN-VAN age differences also
passed Bonferroni-correction across a broad range of t-values thresholds
(DMN: t ¼ [2, 3] and [3.30, 3.70]; VAN: t ¼ [2, 6]; SOM: t ¼ [2.40, 2.50]
and [3, 3.50]; DMN-VAN: t ¼ [2.70, 4.80] and [5.10, 5.80]). Overall,
older adults had greater magnitude of difference in the functional con-
nectivity between states than younger adults within or between the
aforementioned networks. No networks had a greater magnitude of dif-
ference between states in younger adults.
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To characterize the direction of these differences, we averaged the
functional connectivity of all connections within each block (i.e., not just
the connections surviving a particular t-value threshold). The DMN, VAN,
and SOM exhibited a similar pattern of results (see Fig. 5). Using an alpha
threshold of 0.05 to determine significance, older adults had weaker
functional connectivity within these networks during the reasoning task
compared to rest, DMN: t (32) ¼ 140.72, p < .001; VAN: t (32) ¼ 106.00,
p < .001; SOM: t (32) ¼ 87.78, p < .001. Younger adults also had weaker
connectivity during the reasoning task versus rest but to a lesser degree
than older adults, DMN: t (39) ¼ 36.31, p ¼ .015; VAN: t (39) ¼ 18.92, p
¼ .13; SOM: t (39) ¼ 29.94, p ¼ .011. For the DMN-VAN block, older
adults had stronger connectivity during the reasoning task versus rest, t
(32) ¼ 81.87, p < .001; as did younger adults, t (39) ¼ 89.04, p < .001.

3.4. Replication task results

The same sample of participants completed an evaluative judgment
task in which participants rated faces based on how much they liked the
individual pictured. This task was chosen to assess another type of
explicit judgment in which older adults and younger adults differ: eval-
uative judgments based on forming impressions (e.g., Ng et al., 2016).
Fig. 5. Violin plot of the averaged functional connectivity of blocks identified as havi
the network contingency analysis. White dots reflect the median, thick black lines
maximum and minimum of the data. The shape of each is determined by the densit
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We replicated the analyses reported in the main text with the face eval-
uation task to assess the generalizability of our results. Methods and
detailed results from the face evaluation task are included in the Sup-
plementary Materials. The analysis procedures were the same between
the tasks. Although the face evaluation task had a lower quantity of data
(see Method), restricting the sample whose data met our a priori inclusion
criteria (27 older adults, 38 younger adults), we replicated the key results
reported in the main text. Specifically, using the face evaluation task we
found that older adults had a lower rest-task correlation of functional
connectivity than younger adults (Hypothesis 1, Supplementary Mate-
rials Figs. 3–4), and that older adults’ network organization is less
consistent between rest and task compared to younger adults (Hypothesis
2, Supplementary Materials Figs. 5–7). We did not find evidence that the
DMN exhibited a larger magnitude of difference in functional connec-
tivity from resting-state versus the face evaluation task in older adults
versus younger adults (Hypothesis 3, Supplementary Materials
Figs. 8–9).

4. Discussion

The current study revealed the extent of age differences in functional
ng significant age differences in the magnitude of rest-task connectivity based on
indicate the first and third quartile range, and the thin black lines indicate the
y of values.
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connectivity to be state-dependent. That is, although we found that older
adults had less distinct networks than younger adults during resting-
state, this effect was exacerbated during two types of directed tasks –

reasoning and evaluative judgments. Reasoning judgments involve
higher-order cognition (McKinnon and Moscovitch, 2007; Moran, 2013)
of interest to aging researchers. Examining age effects on the functional
connectivity between rest and task states within this domain extends past
work in other domains (e.g., sensorimotor tasks; Monteiro et al., 2019),
potentially generating novel insight for mechanisms of cognitive declines
often observed in older adults versus younger adults.

While showing that connectivity across rest and task states is less
correlated among older adults versus younger adults, the current work
also illustrated a potential explanation for this effect. In principle, lower
similarity of networks across rest and task may be due to subtle ran-
domizations of connection weights within subnetworks that leave the
overall organization intact. Here, we found that the lower correlation
between rest-task states among older adults versus younger adults was
driven by lower consistency in the network organization (i.e. the
assignment of brain regions to distinct networks) between these states.
The organization of brain regions into distinct and strongly internally-
connected networks is thought to promote information flow and neural
communication (Bullmore and Sporns, 2012). That older adults had less
distinct or differentiated networks versus younger adults may reflect
disturbed communication processes that in turn gives rise to age differ-
ences in task performance and cognition.

An important consideration of these findings is that age differences
emerge in functional connectivity and network organization during
resting-state, which could contribute to – if not fully account for – age
differences in task-evoked functional connectivity. However, by con-
trolling for age differences at rest, we showed that task-evoked network
organization is disproportionately weaker among older adults. The
important theoretical contribution of this finding is that it shows that the
extent of older adults’ relative dysfunction in connectivity versus
younger adults depends on the behavioral state (rest, task) in which a
participant is engaged. The current work extends previous findings that
support this assertion (Geerligs et al., 2015b; Monteiro et al., 2019) by
demonstrating this effect in a reasoning task that involve higher-order
cognitive abilities.

Although age differences in the relationship between rest and task
states emerged across the whole brain, certain networks were dispro-
portionately affected. Here, the DMN demonstrated a greater magnitude
of difference in connectivity between rest and task states for older adults
compared to younger adults. Specifically, connectivity within the DMN
was more strongly attenuated during task versus rest states in older
adults as compared to younger adults.2 It is important to note that
components of the reasoning task (false belief trials involving theory of
mind) have been previously associated with age differences in DMN
activation and connectivity (Hughes et al., 2019b; Moran et al., 2012). It
is therefore possible that age deficits in theory of mind might have driven
the DMN differences we observed when collapsing across the false belief
and false photo conditions. However, the magnitude of the age difference
in average DMN connectivity between rest and each task condition did
not differ. This finding indicates that the false belief condition involving
theory of mind did not solely account for age differences in DMN con-
nectivity between rest and task states.

It is also possible that engaging in any reasoning may dispropor-
tionately affect the DMN. In support of this possibility, despite that the
face evaluation task replicated the whole-brain findings, it did not show
age differences in DMN connectivity between states. This conclusion
would suggest that the whole-brain findings may be task-general (see
Cole et al., 2014), whereas network-level effects may best relate to
2 The age difference in DMN average connectivity between rest and task states
did not differ between conditions (false belief, false photo) in the reasoning task,
t(71) ¼ 0.48, p > .32 (see Supplementary Materials Fig. 11).
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specific tasks. Typically, less distinction between networks occurs in
response to task demands (Bertolero, Yeo, & D’Esposito, 2015). Yet, the
fact that decreased segregation of brain networks during tasks occurs to a
greater extent among older adults within the DMN during reasoning may
help identify an age-specific mechanism of dysregulation. That is,
cognitive decline among some older adults may be attributed to the
extent that the functional architecture of brain networks changes from
rest in response to task demands, rather than its dysregulation during
either state alone. The dynamic aspect of functional connectivity repre-
sented by changes in connectivity from rest to task may thus provide a
novel mechanism by which aging impacts cognition. Although beyond
the scope of the current investigation, one particularly fruitful area of
future research would be to examine how the magnitude of difference in
functional connectivity between rest and task states relates to age dif-
ferences in behavior.

Intriguingly, another brain network implicated in this analysis was
the VAN (within-network), which also showed stronger attenuation
during task versus rest states in older adults versus younger adults.
Beyond age differences within the VAN and DMN, older adults (vs.
younger adults) had increased task-evoked connectivity between the
DMN and VAN during the reasoning task versus rest. These findings are
perhaps unsurprising given that emerging theories of aging (Spreng and
Turner, 2019), supported by experimental work (Grady et al., 2016),
emphasize how the DMN’s communication with other brain networks
represents a fundamental shift in the functional architecture of brain
networks in aging. Here, increased task-evoked connectivity between the
DMN and VAN may reflect older adults’ greater difficulty in the
reasoning task and the shift from rest to focused attention during a
goal-directed task (Grady et al., 2016). Functional brain interactions (i.e.,
between-network connectivity) best captured by task-evoked processes
may thus be an understudied characteristic of neurocognitive aging.
However, a limitation of these conclusions is that the network-specific
results were not replicated using the evaluative judgment task (see
Supplementary Materials). Because some network-level effects are
task-specific (Geerligs et al., 2015b), it is not clear what task features
elicited these differences. Future work should thus characterize age ef-
fects on the relationship between resting-state and a wider variety of
cognitive and behavioral tasks.

A final consideration is that our estimates of rest-task overlap may be
more conservative than those in Cole et al. (2014) because we calculated
the correlation at the participant-level to examine age differences,
whereas their procedure was to compare the correlation between
group-averaged rest and task connectivity. Following the group-level
procedure reported in Cole et al. (2014), we find similarly high corre-
lation between states across participants, r ¼ 0.92, as well as within each
group (older adults: r ¼ 0.84; younger adults: r ¼ 0.93). This distinction
may be important for understanding how individual variability in the
correlation between rest and task connectivity relates to cognitive ability.
Limited work shows that older adults’ exacerbated age differences during
task versus rest related to higher error rates on a motor task (Monteiro
et al., 2019). While outside the scope of the current paper, our findings
may generate new insights as to why resting-state connectivity predicts
cognitive abilities via its relationship with task-evoked connectivity.
Future work should investigate how the relationship of connectivity
between rest and task states contributes to age-related declines in
cognitive abilities.

5. Conclusions

Healthy aging is associated with a less consistent functional archi-
tecture of brain networks across states. Because older adults’ networks
are disproportionately affected by task demands versus rest, studying the
dynamic mechanism of change between states (relative to static differ-
ences at rest and task separately) is a theoretically important method by
which to understand negative impacts of aging. Because age negatively
relates to reasoning ability (Moran, 2013), the reasoning judgement task
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involving higher-order cognition studied here extends work in which few
behavioral states (motor tasks, passive movie-watching; Geerligs et al.,
2015b; Monteiro et al., 2019) have been characterized. That task and rest
are consistently less related across behavioral states may reflect a broader
shift in the functional architecture in response to any directed task or
elucidate mechanisms of age differences in the corresponding behavioral
state. The findings of the current work thus broadens our understanding
of aging’s impact on the functional architecture of brain networks and
calls to action the need for future work testing a wider variety of
cognitive and behavioral states.
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